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SUMMARY 

We develop a new method for the efficient calculation of solenoidal vector fields on general regions. The 
method takes advantage of fast direct methods and uses boundary integral equations to satisfy boundary 
conditions. For the latter we give an effective scheme for computing far-field boundary influences (based 
on discrete charges). Examples and numerical results are given. The method is applicable to incompressible 
Navier--Stokes calculations. 
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1. INTRODUCTION 

The origins of this work are in a general scheme given by Gustafson' for determining the stability 
of perturbed flows by estimating the asymptotic distribution of eigenvalues of fluid dynamics 
operators of the form 

- PHDu = Au. (1) 

Here D is a differential expression, e.g. 

A -  1/R2 0 
D = [  0 A - 1 / R 2  :] 

0 0 A 

for the three dimensional Taylor problem of flow between rotating cylinders, and P,  is the 
Helmholtz projector onto the solenoidal subspace of divergence-free vector fields, e.g. 

curl v(Q) 
(3) 

for sufficiently smooth vector fields vanishing near the boundary of the domain SZ in question. 
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A = PHD is a self-adjoint operator in the subspace of solenoidal vector fields and, if 

one may conclude that a linearized non-self-adjoint operator A + JB(v,) has good properties, 
e.g. it is spectral with real simple eigenvalues, and that the perturbed basic flow vo of the full 
non-linear problem is stable. 

As a first step in the investigation of this scheme, the direct calculation of the Helmholtz 
projector PH of (3) was studied., Although good convergence properties (O(h’)) were achieved, 
the CPU times were prohibitively large for general application. 

Other important applications require numerical solenoidal projection. Reference 2 gives a 
partial survey of methods that are used to deal with the solenoidal condition. A more recent 
survey, especially for finite element methods, is given by Further information for the finite 
element approach can be obtained from the papers of Gresho, Lee and Sani,4 Sani et al.,’ Fortin6 
and Gustafson and Hartman.7 Considerable work continues on this problem. 

In our opinion, the most eficient approach is to decompose, by means of fast Poisson solvers, 
(L2(Q))” as the sum of three subspaces 

where H, is the potential component of the vector field (both divergence-free and curl-free), H ,  
is the strictly solenoidal component (divergence-free, not curl-free) and H ,  is the irrotational 
component (curl-free, not divergence-free). The projection algorithm we propose is the following. 

Algorithm 

Given an arbitrary n-component vector field v in (L2(Q))” over a general n-dimensional region Q: 

1. Solve the Poisson-Dirichlet problem 

V24,  = divv, in Q, 
4 3 = 0 ,  on dR; 

let v3 = Vqb3. 
2. Solve the Poisson-Neumann problem 

let v1 = Vq51. 
3. Let v2 = v - v3 - vl. 

Note that n-v, = 0 on dQ. This is the impermeable boundary condition and thus H ,  is the subspace 
of vector fields weakly solenoidal not only in Q but also on 80. If  one wishes to obtain v, with 
just one Poisson solve one should solve the inhomogeneous Poisson-Neumann problem 

V 2 4  = div v, in Q, 

a4 -=n*v ,  on dQ, 
an 

and let v2 = v - V4. 

(9) 
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We remark that for more general boundary conditions (e.g. mixed, Robin), variations of this 
decomposition of an arbitrary vector field into Poisson problems may be derived. 

The method given here uses fast direct solvers to compute the domain contribution & 
(step 1 in the above algorithm) and boundary integral equations to compute the boundary contri- 
butions (step 2 of the algorithm). Boundary integral methods have been used for many years in 
engineering calculations for problems where resolution of complex boundaries is important.*-'O 
Their use in conjunction with fast direct methods has been suggested by Mayo" and Johnson 
and James.I2 When applied in the setting of panel methods, they have been particularly successful 
for the calculation of linear potential flow about complex configurations. A similar setting is 
found in the context of capacitance matrices.' 3-15 

The method presented here has the advantage that by use of panels, complicated boundaries 
are represented more faithfully than with standard finite differences. The resulting boundary 
integral equations have the normal derivative of the fundamental singularity as kernel and hence 
as is well known from potential theory are Fredholm operators. For this potential theory see 
for example Reference 16. Some of the relevant results are summarized by Proskurowski and 
Widlund" and some of the numerical considerations may be found in Reference 17. A consistent 
discretization I + K,, h denoting panel length, constructed so as to converge uniformly to I + K 
as h+O, will have its eigenvalues converging to those of I + K .  This follows essentially from the 
upper semicontinuity of the spectrum, and more specifically, from the continuity of a finite system 
of eigenvalues under small perturbation. Thus, for h sufficiently small, the condition numbers 
of the corresponding linear systems are bounded independent of the number of boundary elements. 
See References 18 and 19 for comparable results for finite difference capacitance matrices and 
finite elements, respectively. 

On the other hand, for the domain contribution from (6), we may use any fast Poisson solver, 
in particular methods based on finite differences combined with convolutions. The method may 
therefore be regarded as a hybrid. 

We have not succeeded in the eigenvalue calculation for the Taylor flow problem mentioned 
at the beginning. We know of only one such calculation that has been carried out in another 
context, that of structures, by Krumhaar,zo which required simplifications of the model and 
assumptions of symmetry to reduce the problem to a system of ordinary differential equations. 
Similar simplifying assumptions to obtain ordinary differential equations for the Taylor problem 
by Richtmyer2' allowed some calculations but failed to determine stability in the sense of a strange 
attractor. 

We are led to the view that to approach general three dimensional flow problems on general 
regions great attention to efficiency and effectiveness will be needed, with considerable preliminary 
numerical experimentation. The present paper may be regarded as a contribution in that direction. 
In Section 2 we describe the hybrid method. We restrict attention to general regions R in two 
dimensions and to piecewise linear (panel) approximations to dR for the boundary contributions, 
which are obtained by collocation. The domain contributions are obtained by embedding R in 
larger rectangles and then using fast direct methods. In Section 3 we focus attention on the cal- 
culation of the resulting near-field-far-field integrals. In aeronautics these are called the aero- 
dynamic influence coefficients, the cli, corresponding to dipole charges placed near the boundary, 
and the pi, corresponding to source charges placed there. In Section 4 we consider the advantages 
of symmetric domains and a question of source versus dipole placement. Comparisons to capaci- 
tance matrix methods and certain aspects of the resulting linear systems are also given. Some 
numerical results are given in Section 5. Among them are calculations on triangles, L-shaped 
domains and n-gons. It would be useful to examine general exterior aerofoil domains, but lack 
of resources did not permit the development of such general software. A number of questions 
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that arise are discussed in both Sections 4 and 5. Applications of the scheme to general Navier- 
Stokes equations in primitive variable form, and some resulting issues concerned with operator 
factorization near the boundary are given in Section 6. 

A main novelty of our method is that point charges need not be positioned on panels when 
dealing with far-field calculations. A fundamental problem underlying a number of these questions, 
one could say it is the price one must pay to gain the efficiencies of this hybrid method, is how 
to cope with the interaction between and placement of boundary panels, charges, and domain 
finite difference grids. We have not completely resolved this problem, but we have tried in this 
paper to identify the key concepts, issues and questions that arise. 

2. THE HYBRID METHOD 

In view of Steps 1 and 2 of the algorithm of the preceding discussion, consider the general problem 

where Q is a general two dimensional region with not necessarily smooth boundary (see Figure 1). 
The basics of the method lie in the simulation of Green's third identity 

where c(P) = 0, if P is in the complement of the closure of the domain, and 2n if PER. For P E ~ Q ,  
c(p) is the angle formed by the tangents to the boundary at  P. The v e c t o r 3  denotes the outward 
normal to dQ at Q, We use the usual notation Rp, for either the vector PQ or for the Euclidean 
distance 

Evaluating 4 may be viewed as a potential problem in electrostatics, except that the influence 
function is now logl/R. There is first the domain contribution # 3  due to the presence of 
volume charges of density f .  Secondly, there is the boundary contribution 41 due to the 
presence on the boundary of sources and dipoles of strengths d$,/an and 41, respectively. 
Note that our notation here is consistent with that of Section 1. The domain potential 43 
is obtained directly by convolution routines for rectangular domains, whereas the boundary 
potential 4 is obtained from boundary integral techniques. 

whenever the context is clear. 

Embedding Region fi rnd grid 

Figure 1. Region, grid and panels 
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The solution to (10) proceeds as follows. First we solve Step 1 of the algorithm 

V24,  = f , ,  in R’, W )  
where R’ is any rectangular region containing LR and f ,  is a chosen smooth extension o f f  to 
Q’. For (12) we employ FFT routines to compute the convolution qi3=fk*S where S =  
(1/2n)log 1/R. Alternatively, we may solve a discrete version of (12) on R by fast direct methods 
such as FACR(l).” A disadvantage to solving the convolution form of (12) is that it requires 
doubling the domain. We note that although Widlund et al.13-15 use a periodic discrete Green’s 
function to compute the domain contribution, we chose not to in order to retain greater flexibility 
in simulating boundary integral contributions. In principle in this method one has a general 
freedom of choice of panel and charge placement. In practice, we always chose charges as close to 
the panel centres as possible for optimality of error reduction. 

The second step of the algorithm is to solve 

v24, = 0, in R, 
a4 1 843 a41 + p-- = y -a& - py-, an on aR, an 

for the ‘boundary corrector’ 41. In order to carry out this solution, we must approximate 
43 and &$,/an at the collocation points on the boundary. These points are located at 
the panel endpoints and the approximation is done with a second order accurate interpolation 
formula. Then 41 is found by a boundary integral method described immediately below. 
Because of the stability of the problem (13) and the fact that the boundary integral method is 
second order, the solution $1 will be second order accurate. Clearly 41 + 43 then solves 
the original problem (10). 

For the description of the boundary integral method we follow for convenience and simplicity 
that given in a previous anno~ncement,’~ which in turn for consistency uses the notation of 
Fairweather et 

From the Green’s identity, equation (1 1) with f =  0, we construct piecewise linear (or piecewise 
quadratic for higher order approximations) basis functions for a#/an and 4. Using collo- 
cation on the integral equation and its normal derivative will enforce the boundary conditions 
and yield a linear system for the surface singularity values. To achieve this end we partition 8 0  
into M line segments 8LRj with endpoints Pl,j  and P2,j, j = 1 , .  . . , M (see Figure 1). 

Other boundary integral formulations could be used here as well. 

For 0 6 t 6 1, we let (in the piecewise linear instance) 
M , ( t )  = 1 - t ,  
M2(t)  = t 

and, if P i , j  = (xi, y i )  denotes the Cartesian co-ordinates for the point Pi,j, we parametrize dQj by 
2 

X ( t )  = c Mi(t)X!, 
i =  1 

We then approximate 4 and 4n = by 
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where Q = Q(t) = and the unknowns are 
&(Pi, j ) .  Similarly for the Neumann problem we set &(Pi, j )  = qbn(Pi, j )  and solve for the unknown 
$(Pi, j ) .  For Robin or mixed boundary conditions one must choose to eliminate one of 6 or 6, in 
favour of the other. 

Pi,jMi(t). In the Dirichlet problem &Pi,j) = 

The integral equation (1 1) becomes 

Upon collocation at the points Pt,m we have 

where 

Because P2,m-1 = Pl,m (17) contains M independent equations provided that 6 and 6, are 
continuous. If one.of them has a discontinuity at some Pl,j  then P2,j-1 contributes an extra 
equation. For simplicity we shall not consider that case here. For given Neumann boundary 
conditions, (17) is Fredholm of the second kind, for given Dirichlet conditions it is Fredholm of the 
first kind. As mentioned above, for Robin boundary conditions one must eliminate one variable in 
favour of the other. 

Finally, we turn to the matrix equation characterizing the linear system. To this end, we note 
that an effect of discretizing the boundary into linear panels is to introduce non-unique normals 
at the panel nodes. However, since integration along individual panels is carried out independently 
of neighbouring panels, this uniqueness problem is circumvented by defining at each node two 
normals, one for each of the two panels having the node in common. 

Define the coefficients ak, and bk, by 

ak,j+ 1 = aZ,APk)  + “l,j+ l(Pk) - bk,jC(Pk)? 

bk,2j-1 = P l , A p k ) ,  (19) 
bk,2j= P2,  j +  1 P A  

k = 1,2,3,. . . , M ,  j = 1,2,3,. . . , M ,  where for convenience of notation we set Pk = Pz,k. For these 
collocation points Pk, the M ~ , ~  and Pi,j of (18) may be computed analytically. By the assumption 
of a closed boundary note that 

al,M+l(Pk)=M1,l(Pk)~ 

and 
P l , M +  lfPk) = P 1 , l ( P k ) .  

Thus, equations (17) have the matrix form 

A$ = B$n, 
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where 

M 

where l j  denotes the length of the boundary segment 352,. This constraint is the discrete analogue 
of the compatibility condition on the boundary data that follows from A$ = 0. When only 
Neumann data is present, to guarantee a unique solution, another constraint is needed. We choose 
to specify the average value of the solution on the boundary, i.e. 

M c, $(Pj)lj = 0. 
j= I 

For the Robin boundary condition, we need only the constraint (21). For Step 2 of the solenoidal 
projection algorithm which is a pure Neumann problem, both constraints are needed. 

The matrix equation (20), (22) may be solved for the unknown boundary corrector $l by any 
appropriate least squares solver. Special domain properties may conceivably enter into this choice. 
We used a general IMSL subroutine in the calculations given later in this paper. 

and V$, at interior 
points P. The JS(P), and then the V$,(P) by straightforward differences, are obtained from the 
discretized integral equation (1 la). The needed coefficients ai,AP) and p,,j(P) of (1 8) are obtained by 
applying a near-field-far-field algorithm described in the next section. 

To complete the corrector Step 2 of the hybrid scheme, we also need 

3. NEAR-FIELD-FAR-FIELD INTEGRAL EVALUATIONS 

The integrals a i J P )  and pi,JP) defined in equation (18) for interior points must be evaluated as 
efficiently as possible. Near-field-far-field techniques have been developed for aerodynamics codes 
for this purpose. We refer to Reference 8 for a discussion of source far-field evaluations and to 
Reference 9 for doublets and higher order sources. 

Briefly, the idea is that if P is far enough away from the panel or boundary segment in question, 
the integrals are very nearly the same as the influence of point sources, point dipoles, higher 
order moments, or a combination of the above depending on the accuracy desired. Traditionally, 
these moments have been placed at the panel or boundary segment centre. The approach given 
here uses only point charges to approximate both source and dipole distributions and allows 
for their placement to be off the panel. This generalizes previous formulations and is crucial to 
the use of fast direct methods in evaluating the cqj(P) and pi,AP) cheaply. 

If the point P is close to the panel in question a more accurate evaluation is required. The 
choice of panels or linear segments in approximating boundary arcs along with more general 
polynomial singularity distributions allows for the analytic evaluations of these integrals as des- 
cribed by Johnson and R ~ b b e r t . ~  Various weighted quadrature techniques have also been used, 
for instance Fairweather et aLZ4 use Gaussian quadrature on quadratic boundary arcs. In the 
latest generation of aerodynamics codes, different methods are used depending on the distance 
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between the panel and the point P. In many cases 90 per cent of the integral evaluations are 
performed by far-field routines, reducing computing times by an order of magnitude. 

Here we give error estimates for a general far-field approximation method that is shown to 
be first order accurate. 

Let the fixed point P be denoted by (PI, P2), and let the variable boundary point Q be para- 
metrized by Q(t) = (X( t ) ,  Y(2)). Then, noting that 

and letting H(P, Q(t)) denote the angle defined by the inverse tangent in (23), we have from (1 8) the 
expressions 

For a given boundary element these quantities may be analytically evaluated. For far-field 
approximations, one essentially uses Newton’s concept that a set of charges at a distance appears 
as a single charge at a centroid point. The gi,)(P) and Bi,j(P) are approximated using discrete 
charges at grid points of the superimposed rectangular grid. 

Consider the source integral BJP). Let Q, be the grid point closest to the centre of the 
boundary element (see Figure 2). Let R ,  = R,,,, be the vector between P and Qo, and let 
AR = K,, - R,. Let the grid points be spaced a distance h apart in both the x and y directions. 
Expanding log 1/R in a Taylor series, where now R denotes the scalar 1 R,,/, 

S 1 
log- = log- - (RO, A R ) / /  R ,  1’ + . . . 

R lR,I 

P 
X 

Ro 

QO 
t=l 

Q = Q, + (h  s i n  8 ,h cos 8 )  

X 

t = O  

Figure 2(a). 45” panel orientation geometry 
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Figure 2(b). Point charge representation of a source panel 

Placing a single charge of strength (T = SCa,Mids at Qo and keeping only the lowest order error 
term, 

Let 1 be the length of the boundary element anj. For error estimation we further require that 
the panel length be smaller than some constant multiple of the grid spacing h. Then 

< Ki12//RoI < K2h2/1RoI, 

where K ,  depends on fia,Mi ds, i.e. the strength of the singularity distribution, the constant relating 
panel length 1 and grid spacing h, and on the orientation of the panel. 

For example, if the panel is oriented at 45" to the grid lines and is of length h $ then 

(Ro)(AR) dt = (h2 $/Ro) - ( t  - dt = - k2 $/(3Ro). 
2Rih s: 

Hence, in this case the constant K ,  has the value - J2/3. 
The E,,~(P) are approximated similarly by using a discrete dipole consisting of three charges 

at grid points as described by Proskurowski and Widlund' (see Figure 3) .  In this case the principal 
error term is K3h2/Ri + K,k2/Ri where K ,  and K ,  depend on the strength of the dipole 
distribution, the constant relating panel length I to the grid spacing k, and on the orientation 
of the panel. 

Since in two dimensions there are O(l/h) panels on a fixed boundary curve, the overall error 
is first order in k at a fixed distance from the boundary. Higher order can be achieved by taking 

*--++ 
Figure 3. Discrete dipole representation of a dipole panel using three charges 
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more terms in the expansions and using more discrete charges per panel as in Reference 25. 
Furthermore, a global second order scheme may be achieved provided each boundary element 
contains a node of a bisecting, normal grid line. Under such conditions the local error is third 
order in h. This is the case, for instance, for any region which is a union of rectangles aligned 
with the grid. For a locally second order method for the source layer, we require that K2h2/R,  d h2. 
Thus a suitable cut-off criterion would be to use accurate near-field calculations whenever 
R ,  d K,, and efficient far-field calculations otherwise. Similar estimates can be made for the 
dipole layer. 

The potential Cal(P) at interior points P for Step 2 of our scheme is thus computed at 
reduced cost by use of the far-field approximation outlined here. Its implementation needs only 
one call to a fast direct solver (e.g. FFT enhanced convolution routine) which does all panels 
simultaneously. 

For uniform high order accuracy one can use the more accurate near field influences for panel/ 
point pairs that are close together. This correction process can be made inexpensive compared 
to the fast direct solver itself. More details of this correction process can be found in Reference 25. 

The crucial point about the method given above is that the effect of the boundary singularities 
can be accurately simulated on a rectangular grid of points provided that near-field corrections 
are used. This allows the use of fast direct methods or multigrid methods to reduce the cost of 
computation. 

In Section 5 one will find both far-field (see Figures 5-7 and Tables I, 11) and near-field (see 
Figure 8) computations. 

4. SYMMETRY, CAPACITANCE MATRICES, OPERATION COUNTS 
AND RELATED CONSIDERATIONS 

In this section we consider a number of related analytical questions. A main idea is that the 
more symmetrical the domain R, the more amenable it is to the efficient or even analytical inversion 
of the fundamentally important matrix equation (20). In particular, we illustrate, by means of 
the Dirichlet and Neumann problems for a regular n-gon, the role of symmetry and a connection 
to the theory of capacitance matrices. Consider the linear system coming from the boundary 
integral equation for a circular region R. An optimal way of linearizing a circle is by using inscribed 
regular n-gons (see Figure 4). As shown above, the matrix equation representing this system is 
given by (20) along with the compatibility constraints (21) or (22). Matrices arising from the 

Figure 4. Octagon inscribed in a unit circle 
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discretization of boundary integral equations on regular n-gons are highly symmetric, and, in 
fact, are cyclic. This makes them amenable to Fourier analysis. 

Let us first note some interesting properties of the matrices A and B of equation (20) corres- 
ponding to this region. Symmetry of the domain dictates that cti,jPk+ ,) = a i v j -  ,(Pk), and 
fli.JPk+ 1) = & j -  ,(Pk), where the Pk represent the vertices of the regular n-gon. Since c(Pk) = 
C ( P ~ + ~ ) ,  it follows from (19) that ak,j-l and h k , j - ,  = h k + , , j .  Thus the matrices A and B 
of (20) are both cyclic. In addition 

and from 

we see that 

~ U , , ~ = O ,  k = l ,  ..., n. 
j =  1 

Since 

~ 

we see, in addition, that ak,j > 0 for k # j .  Here PkQ is the vector representing the line segment 
joining the points P, and Q. Finally, 

Thus the augmented matrix equation (i.e. (20) with constraints (21) or (22)) for the boundary 
integral equation (17) on a regular n-gon has the form 

= - c(Pk). 

Ad, = BK, (26) 

where A and B are the (n + 1) x n and (n + 1) x 2n matrices 

where I, x n  = ( 1 , 1 , .  . . , 1 )  and 1 is a constant equal to the length of the sides of the inscribed regular 
n-gon. 

We next show how to solve the Neumann problem efficiently. To achieve this we sketch a 
procedure for inverting the matrix A of equation (26). 

The left inverse of A will be of the form 

A - ’  = CD,,, 4,ll’ (27) 

where I, , = (1 ,1 , .  . . , l )T.  The matrix D,, ,I is itself cyclic and so will be fully determined once its 
first row is known. This first row XT of D, satisfies the equation 

XrA = b’, (28) 

where bT = (1 - 1, - I , .  . . , - 1). Letting l j ,  j = 0,.  . . , n - 1 denote the components of the discrete 
Fourier transform of the first row of AT, it can be seen that for j # 0, ,Ij # 0 
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where 
W i =  ( 1,exp ( 2 ; i j )  ___ ,..., exp (2xi j ( ;  - I)))' 

(for details, see Reference 26). Thus, for such regions, the boundary integral equation at the collo- 
cation points may be solved by means of discrete Fourier transforms. 

The example above reduced to solving an equation of the form 

(6 = A - 'B(6,. (30) 
If we write it in the other direction 

qn = B-'A(6, 
we may regard B-'  as a capacitance matrix. Recall that the electrostatic capacity proportions 
charge and potential according to Q = CK In our case &, represents charge sources and A6 a 
potential. We mention in making this connection that our interpretation agrees with the con- 
vention of Hackney,, but we hasten to add that in much of the capacitance matrix literature, the 
capacitance matrix corresponds to C- '. 

Let us next turn to the issue of calculating a discrete Green's function for a given region. In 
particular, consider the problem of placing only source charges at collocation points along the 
boundary of a region in such a way as to enforce a Dirichlet boundary condition at those points. 
Assuming that such a charge distribution could be found, it would then be possible to compute 
the resulting potential field by convolving the source distribution with the influence function 
S = - (1/2x) log R.  Thus, letting f denote the vector consisting of the boundary conditions at the 
collocation points, we see that the vector of source charges for the collocation points must satisfy 
the matrix equation 

cq = f. 

The domain potential is found by 

4 = S* TC-If 

where T represents the assignment of charges of the one dimensional array C- 'f to the corres- 
ponding nodal positions on dR in the two dimensional grid. Provided that C-'  exists, a discrete 
Green's function for the domain is 

G = S* TC- ' .  

The investigation of the question of inverting C for general domains is an interesting problem. 
However, for highly symmetric domains such as the regular n-gon, the matrix C becomes more 
amenable to analysis. In the case of a regular n-gon, with the collocation points being the vertices 
themselves, it can be shown that C is cyclic and, moreover, is invertible provided that the discrete 
Fourier transform of its first row has no zero components. Numerical tests for several values 
of n have shown this always to be the case. 

The use of sources only in computing domain potentials has the advantage that it is often 
easier to place them in ideal locations (i.e. near the middle of a panel) which is not the case for 
the placement of dipoles. We next turn our attention to an operation count in two dimensions 
for the hybrid scheme. Let N be the number of grid lines, in each direction, of the rectangular 
domain R' containing the region R of the problem. Let P be the number of linear segments (i.e. 
panels) used to approximate 22. Then 

1. To solve equation (12) for 43 by fast direct methods requires O(N2 log, N )  operations. 
2. To interpolate 43 onto the P = O ( N )  collocation points of dR requires O(N)  operations. 
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3. To solve the boundary integral equation, as the linearized matrix equation (20), requires 
O ( N 3 )  operations, if done directly. 

4. To compute (pI(P), equation (13), for far-field points P, entails O(N210g, N )  operations. 
5. Finally, to compute 41(P), equation (13) for near-field points P requires O ( N 3 )  operations. 

Note that we do not include in our operation count the construction of the matrices representing 
the linearization of the boundary integral equations. Such matrices depend on the geometry of 
the domain only and, hence, may be precomputed. In addition, the large count for the inversion 
of the linear system may be attenuated with respect to the other counts whenever many calls 
to the solver are needed for a fixed domain. Our examples show this operation count is very 
conservative. The cost of the near field computations can be reduced by using higher order 
approximations for cli,j  and 

In three dimensions, the far-field error can be estimated by expanding 1/R in a Taylor series as in 
Section 3. The corresponding error term for source distributions is Kk3/R;. Since the number of 
panels P is O(N2) ,  the operation counts are 

as given in Reference 25. 

1. O(N310gN) to find ( p 3 .  
2. O(N2)  to do the required interpolation onto the collocation points 
3. to solve (20) directly requires O(Nh)  operations 
4. to compute (PI(€') at far-field points P requires O ( N 3  log N )  operations 
5. to compute the near-field corrections for (pl(P) requires O ( N 5 )  operations with a large 

Iterative methods such as those studied in Reference 25 can reduce the counts for 3 and 5 to 
O ( N 3  log N )  operations. 

constant. 

5. NUMERICAL RESULTS 

Both far-field and near-field computations were performed to test the method. We present results 
for rectangles, triangles, diamonds, pentagons, octagons and L-shaped regions. Panel lengths 
were proportional to the width of a grid box for all the runs. The error estimates indicate that 
this increases the order of convergence. First, in testing Step 2 of our scheme, we limited ourselves 
to the far-field, i.e. uncorrected, method. However, the far-field solution was quite accurate even 
very close to the boundary as shown in Figures 5--7 and Tables 1-111. An exception to this 
is the missing entries in Figures 5 and 6, where the exponents were non-negative. In all of these 
cases, we used the functions &x, y )  = x - y ,  and +(x, y )  = x2 - y2, as the test cases. The length and 
width of a grid box is denoted by k. The enclosing rectangular region, in all cases, is the unit square. 
The problem treated was the recovery of (b from its known boundary values 4 and (34/dn, by use 
of far-field methods applied to (1 1 a). 

Secondly, we tested the boundary integral solution of (20), (22) for at the boundary nodes. 
These were found to be second order accurate, see Table 111. 

Finally, we illustrate the full solenoidal algorithm on a square and on an L-shaped region, 
employing the more accurate near-field methods (see Figure 8). 

-Lb02(ABSOLUTE ERROR) BEFORE CORRECTION 
4 

5 6 4  
2 5 1  
512 3 
3 7 1  
8 9 4  

5 2 5 3 848 8 2 
4 6 512 7 9 847 5 

4 1 3 1 4  2 551 

Figure 5(a). -log, (error) of the far field method at all interior points of an L-shaped region with mesh size h = 1,'lO 
and panel length 1 = 2h. Twenty panels in all. Test function d, = x - y 
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-LOQP(ABSOLUTE ERROR1 BEFORE CORRECTION 

4 3 3  
4 9 6 9 6 8 3  
1 6 7 7 6 6  
4 9 7 7 7 1 1  3 
1 7 8 7 7 6  
511 8 8 8 8 3  
2 8 8 8 8 7  
511 9 9 9 8 3  
3 91010 9 7 1 
610111011 8 4 
413131110 8 1 
913141212 8 4 

4 1 4 1 5 2 5 3 6 4 94813141211 8 1 
4 9 6 9 711 811 91013131347151314 9 4 

6 7 7 8 8 8 9101113141415481412 9 2 
3 9 7 7 7 8 8 9101011121213144816 9 5 

6 6 7 7 8 8 9 91110121114121648 9 3 
3 8 611 6 8  7 8 7 8 8 8 8 9 9 9 949 6 

3 3 3 3 1 4 1 4 1 4 2 5 3 6 4 7  

Figure 5(b). - log, (error) of the far field method at all interior points of an L-shaped region with mesh size h = 1/20 
and panel length I = 2h. Forty panels in all. Test function Q, = x - y 

-Lb02(ABSdLUTE ERROR) BEFORE CORRECTION 
4 8 5 2 4 1 4 1 3  1 

5 4 9 8 9 7 8 6 1  2 
2 84810 8 8 4 3 
4 91048 7 3 3 
1 7 8 749 5 
4 8 8 3 5  
1 6 4 3  
3 1 3  

2 
1 

Figure @a). - log, (error) of the far field method at all interior points of a right triangle with mesh size h = 1/12 and panel 
length I = 2h. 18 panels in all. Test function: (p = x - y 

-LO(32(ABSOLUTE ERROR) BEFORE CORRECTION 
4 8 6 3 5 2 5 2 4 1 4 1 4 1 3  3 3 3 1 

6 4 7 9 9 9 9 8 9 8 8 8 8 7 8 7 8 7 7 6  2 
3 947151213111210111010 910 9 9 7 8 3 2 
5 91548131212111111101010 910 8 9 1 2 
2 91213471312121111111010 9 8 8 4 2 
5 91312135013121211111011 9 9 1 3 
2 811121213501312121210 8 8 4 3 
4 912111212135113121610 9 2 3 
1 8101111121213481110 8 5 4 
4 81111111112121149 8 3 4 
1 810101111121610 848 6 
4 8101010101010 8 3 6 
1 7 9101011 8 9 5 4 
3 810 9 9 9 8 2 4 

7 9 1 0 8 9 4 3  
3 8 9 8 8 1 3  

7 7 9 4 3  
3 7 8 1 2  

6 3 2  
3 2  

2 
1 

Figure 6(b). -log, (error) of the far field method at all interior points of a right triangle with mesh size h = 1/24 and 
panel length I = 2h. 36 panels in all. Test function: Q, = x - y 
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-LCK)2( ABSOLUTE ERROR) BEFORE CORRECTION 

3 2 1  
4 5 1 4  2 1  

448 6 4 3 3 5 2 1 
5 648 5 4 4 7 5 2 

3 1 4 5 4 8 5 5 4 3  1 
2 4 3 4  5 4 8 5 4  3 4  2 
1 3 4 5 5 4 7 5 4 1 3  

2 5 7 4 4 547 6 5 
1 2 5 3 3 4 6 4 8 4  

1 2  4 1 5 4  
1 2 3  

Figure 7(a). -log, (error) of the far field method at all interior points of the unit octagon with mesh size h = 1/14 and 
one panel per side. Test function Cp = x - y 

-L0(32( ABSOLUTE ERROR) BEFORE CORRECTION 

2 
3 4 3  

4 4 4 8 4 3 3 5 3 2 1  
5 6 1 8 6 7 5 4 5 7 5 7  2 1  

548 7 5 6 7 6 5 5 5 6 6 4 3 4 2 1 
6 748 7 7 7 6 6 6 6 6 5 5 5 6 4 2 

4 1 5 7 5 0 8 7 7 6 6 6 6 5 5 5 5 3  1 
4 8 6 7 8 4 7 8 7 7 6 6 6 6 5 5 5 4 7 2  
4 6 7 7 7 8 4 7 8 7 7 6 6 6 6 5 5 6 5 3  

3 8 7 6 6 7 7 8 4 7 8 7 7 6 6 6 6 6 6 7 5 3  
4 5 5 6 6 7 7 8 4 7 8 7 7 6 6 6 6 5 5 3  

2 4 3 4 5 6 6 6 7 7 8 5 1 8 7 7 6 6 6 5 4 3 4 2  
3 5 5 6 6 6 6 7 7 8 5 0 8 7 7 6 6 5 5 4  

3 5 7 6 6 6 6 6 6 7 7 8 4 7 8 7 7 6 6 7 8 3  
3 5 6 5 5 6 6 6 6 7 7 8 4 7 8 7 7 7 6 4  
2 7 4 5 5 5 6 6 6 6 7 7 8 4 7 8 7 6 8 4  
1 3 5 5 5 5 6 6 6 6 7 7 8 5 1 7 5 1 4  

2 4 6 5 5 5 6 6 6 6 6 7 7 750 7 6 
1 2  4 3 4 6 6 5 5 5 6 7 6 5 747 5 

1 2  7 5 7 5 4 5 7 6 8 1 6 5  
1 2 3 5 3 3 4 8 4 4 4  

3 4 3  
2 

Figure 7(b). -log, (error) of the far field method at all interior points of the unit octagon with mesh size h = 1\28 and 
two panels per side. Test function #I = x - y 

Table I. - log, (absolute error) at the far field point P = (0.625, 0.500) versus mesh size 
h for the test function x - y 

Equilateral Diamond L-shaped 
h triangle (square) Pentagon Octagon region 

1/32 5 7 I 7 13 
1/64 6 10 9 10 15 
11128 9 12 9 10 17 
11256 11 12 11 10 19 

111024 12 15 13 13 23 
112048 14 16 14 14 

11512 1 1  13 12 11 21 
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Table 11. - log, (absolute error) at the far field point P = (0.625,0500) versus mesh size 
h for the test function x2 - y2 

Equilateral Diamond L-shaped 
h triangle (square) Pentagon Octagon region 

1/32 4 7 7 7 14 
1/64 6 9 9 10 16 
111 28 10 13 9 10 18 
11256 1 1  12 10 9 20 
1/512 1 1  13 12 1 1  22 
111024 13 14 12 13 24 
112048 14 16 13 13 

Figures 5-7 and Tables I, I1 indicate that for relatively small mesh sizes (i.e. h < 1/64) the 
convergence rate is first order, in agreement with the estimates of Section 3 above. 

Next, in Table 111 we show that the discretization of the boundary integral equation by linear 
elements without far-field approximations, i.e. equation (20), is second order in h. The harmonic 
functions $ ( x , y )  = ReZk were used as solutions to the Dirichlet problem on domains Q, = the 
regular n-gon inscribed in the unit circle. 

Table 111. Discretization of boundary integral 
equation using linear approximations. The domain 
is a regular n-gon inscribed in the unit circle. Entries 
are relative errors. Test function $(x, y )  = ReZk 

n = l O  n=20 n=40 

k = l  0.086 0.003 0.001 
k = 2  0.225 0.01 5 0.004 
k = 3  0.342 0.039 001 1 

We close this section with two examples of solenoidal projection according to the algorithm 
of Section 1 and employing the hybrid method of Section 2. The two domains considered are 
a square and an L-shaped region. In both cases the test vector field is v = (x, y )  and in both cases 
a total of twenty panels, each of length 0.2, were used to discretize the boundary. Figures 8(a) 
and 8(b) give the x and y components of the projection u2 at all grid nodes of the regions, as 
well as their respective discrete divergence values at all interior grid nodes. The notation is 
u2 = v2 = (VX2, VY2). 
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6. NAVIER-STOKES EQUATIONS 

For studying numerically the viscous incompressible Navier-Stokes equations 

1 
Re v, - - V2v + (v.V)v = - Vp +f, in R, 

V * v = O ,  in R, (33) 
on general regions R under appropriate boundary conditions on dR, one encounters, not unsur- 
prisingly, two problems: 

1. How should one efficiently solve the momentum equation (32) over a large number, e.g. in the 
thousands or tens of thousands, of time steps? 

2. How can one effectively guarantee that the evolving vector flow field v remain in the 
solonoidal subspace, i.e. satisfy (33), at every time step? 

The relationships of these two problems and their interplay one with the other are well known 
and in recent years a number of ‘splitting’ schemes have been proposed and investigated. We 
refer the reader to the excellent discussion of these methods given by Peyret and Tay10r.~’ 

In such methods, in following either a primitive variables (pressure, velocity) formulation or 
a vorticity-stream-function formulation, one arrives, even after clever tricks such as those of 
Reference 4, at the need for fast Poisson solvers at each remaining time step. The hybrid scheme 
of Section 2 is ideally suited to these Navier-Stokes problems for general regions. 

Note that most of the finite difference methods described in Reference 27 presume a, locally 
at least, rectangular boundary 30. This brings us to three interesting questions. 

First, for irregular boundaries treated in a finite difference scheme, as in our use of fast direct 
methods in the hybrid method for the domain contributions, how does one express the discrete 
solenoidal condition so as to avoid generating spurious pressures, flow instabilities or mass 
creation at 3R. For regular regions these matters have been subjected to considerable analysis in a 
number of references already cited. In particular, the factorization 

L= DG, (34) 
L the discrete Laplacian, D the discrete divergence, G the discrete gradient, is quite important 
to their understanding. Let us recall very quickly why. 

Consider a simple marching scheme such as explicit Euler, in which the velocity field is advanced 
according to 

v, + 1 = v, - (GP,)At + F(v,)At, 

Dv,+ 1 = Dv, - (DGp, - DF(v,))At 

(35) 

(36) 
and v , + ~  is discretely solenoidal provided that v, was discretely solenoidal (one can allow the 
D’s to depend on n) and provided that in the Poisson solver used to compute p,, namely 

where F(v,) denotes the remaining terms in the momentum equation (32). Then 

LP, = DF(V,), (37) 
one has consistently factorized as in (34). 

Note that it is the case that the MAC, i.e. marker and cell, grid satisfies the factorization (34) 
that permits the use of fast direct Poisson solvers for adjusting the pressure field at each time 
step. Likewise in the finite element formulations, e.g. of References 4 and 5,  it is the factorization 
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used there, namely 

wherein C and CT denote discrete gradient and divergence, which preserves the mass. The same 
guiding requirement can be found in most of the methods discussed in Reference 27. Although 
we have given a preliminary analysis of aspects of this question for irregular SZ in Reference 28 
observing in particular the importance of requiring that the flow velocity field have vanishing 
normal components at the boundary, a more complete analysis of boundary incompressibility 
consistent with factorizations such as (34) for general domains is needed. If such factorizations 
cannot be obtained, one could investigate other, albeit less direct, pressure adjustment schemes, 
in which, for instance, one relaxes the requirement of high precision incompressibility to just 
incompressibility to some acceptable, e.g. 2nd, order. 

The second question is an extension of the first, and brings us full circle to the statement at 
the end of the Introduction. How should one consistently interface a domain factorization such 
as (34) with the boundary panel configuration? A third question for the hybrid method is: how 
should the dipoles and monopoles be placed in the cti, and pi, calculations to effect a scheme 
with a consistent factorization near and at the boundary? 

7. CONCLUSION 

We have investigated a new method for the calculation of solenoidal vector fields on arbitrary 
regions. Its core is a hybrid Poisson solver combining fast direct methods and boundary elements. 
Additionally, it employs far field panel methods (compare, for instance, Reference 29: the boundary 
integral method corresponds to using only near-field formulations) for greater efficiency. It has 
been tested on several domains and is second order locally and first order globally. A number 
of interesting related questions have been raised. 
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